mirror of
https://github.com/MISP/misp-galaxy.git
synced 2024-11-22 23:07:19 +00:00
329 lines
14 KiB
Python
329 lines
14 KiB
Python
#!/usr/bin/python
|
|
|
|
import json
|
|
import os
|
|
from typing import List
|
|
|
|
import validators
|
|
|
|
pathClusters = '../../clusters'
|
|
pathSite = './site/docs'
|
|
|
|
galaxies_fnames = []
|
|
files_to_ignore = [] # if you want to skip a specific cluster in the generation
|
|
|
|
for f in os.listdir(pathClusters):
|
|
if '.json' in f and f not in files_to_ignore:
|
|
galaxies_fnames.append(f)
|
|
|
|
galaxies_fnames.sort()
|
|
galaxy_output = {}
|
|
|
|
# Variables for statistics
|
|
public_relations_count = 0
|
|
private_relations_count = 0
|
|
|
|
private_clusters = []
|
|
public_clusters = []
|
|
|
|
relation_count_dict = {}
|
|
synonyms_count_dict = {}
|
|
|
|
empty_uuids_dict = {}
|
|
|
|
|
|
intro = """
|
|
# MISP Galaxy
|
|
|
|
The MISP galaxy offers a streamlined approach for representing large entities, known as clusters, which can be linked to MISP events or attributes. Each cluster consists of one or more elements, represented as key-value pairs. MISP galaxy comes with a default knowledge base, encompassing areas like Threat Actors, Tools, Ransomware, and ATT&CK matrices. However, users have the flexibility to modify, update, replace, or share these elements according to their needs.
|
|
|
|
Clusters and vocabularies within MISP galaxy can be utilized in their original form or as a foundational knowledge base. The distribution settings for each cluster can be adjusted, allowing for either restricted or wide dissemination.
|
|
|
|
Additionally, MISP galaxies enable the representation of existing standards like the MITRE ATT&CK™ framework, as well as custom matrices.
|
|
|
|
The aim is to provide a core set of clusters for organizations embarking on analysis, which can be further tailored to include localized, private information or additional, shareable data.
|
|
|
|
Clusters serve as an open and freely accessible knowledge base, which can be utilized and expanded within [MISP](https://www.misp-project.org/) or other threat intelligence platforms.
|
|
|
|
![Overview of the integration of MISP galaxy in the MISP Threat Intelligence Sharing Platform](https://raw.githubusercontent.com/MISP/misp-galaxy/aa41337fd78946a60aef3783f58f337d2342430a/doc/images/galaxy.png)
|
|
|
|
## Publicly available clusters
|
|
|
|
"""
|
|
contributing = """
|
|
|
|
# Contributing
|
|
|
|
In the dynamic realm of threat intelligence, a variety of models and approaches exist to systematically organize, categorize, and delineate threat actors, hazards, or activity groups. We embrace innovative methodologies for articulating threat intelligence. The galaxy model is particularly versatile, enabling you to leverage and integrate methodologies that you trust and are already utilizing within your organization or community.
|
|
|
|
We encourage collaboration and contributions to the [MISP Galaxy JSON files](https://github.com/MISP/misp-galaxy/). Feel free to fork the project, enhance existing elements or clusters, or introduce new ones. Your insights are valuable - share them with us through a pull-request.
|
|
|
|
"""
|
|
|
|
class Galaxy():
|
|
def __init__(self, cluster_list: List[dict], authors, description, name, json_file_name):
|
|
self.cluster_list = cluster_list
|
|
self.authors = authors
|
|
self.description = description
|
|
self.name = name
|
|
self.json_file_name = json_file_name
|
|
self.clusters = self._create_clusters()
|
|
self.entry = ""
|
|
|
|
def _create_metadata_entry(self):
|
|
self.entry += "---\n"
|
|
self.entry += f'title: {self.name}\n'
|
|
meta_description = self.description.replace("\"", "-")
|
|
self.entry += f'description: {meta_description}\n'
|
|
self.entry += "---\n"
|
|
|
|
def _create_title_entry(self):
|
|
self.entry += f'# {self.name}\n'
|
|
|
|
def _create_description_entry(self):
|
|
self.entry += f'{self.description}\n'
|
|
|
|
def _create_authors_entry(self):
|
|
if self.authors:
|
|
self.entry += f'\n'
|
|
self.entry += f'??? info "Authors"\n'
|
|
self.entry += f'\n'
|
|
self.entry += f' | Authors and/or Contributors|\n'
|
|
self.entry += f' |----------------------------|\n'
|
|
for author in self.authors:
|
|
self.entry += f' |{author}|\n'
|
|
|
|
def _create_clusters(self):
|
|
clusters = []
|
|
for cluster in self.cluster_list:
|
|
clusters.append(Cluster(
|
|
value=cluster.get('value', None),
|
|
description=cluster.get('description', None),
|
|
uuid=cluster.get('uuid', None),
|
|
date=cluster.get('date', None),
|
|
related_list=cluster.get('related', None),
|
|
meta=cluster.get('meta', None)
|
|
))
|
|
return clusters
|
|
|
|
def _create_clusters_entry(self):
|
|
for cluster in self.clusters:
|
|
self.entry += cluster.create_entry()
|
|
|
|
def create_entry(self):
|
|
self._create_metadata_entry()
|
|
self._create_title_entry()
|
|
self._create_description_entry()
|
|
self._create_authors_entry()
|
|
self._create_clusters_entry()
|
|
return self.entry
|
|
|
|
class Cluster():
|
|
def __init__(self, description, uuid, date, value, related_list, meta):
|
|
self.description = description
|
|
self.uuid = uuid
|
|
self.date = date
|
|
self.value = value
|
|
self.related_list = related_list
|
|
self.meta = meta
|
|
self.entry = ""
|
|
|
|
def _create_title_entry(self):
|
|
self.entry += f'## {self.value}\n'
|
|
self.entry += f'\n'
|
|
|
|
def _create_description_entry(self):
|
|
if self.description:
|
|
self.entry += f'{self.description}\n'
|
|
|
|
def _create_synonyms_entry(self):
|
|
if isinstance(self.meta, dict) and self.meta.get('synonyms'):
|
|
self.entry += f'\n'
|
|
self.entry += f'??? info "Synonyms"\n'
|
|
self.entry += f'\n'
|
|
self.entry += f' "synonyms" in the meta part typically refer to alternate names or labels that are associated with a particular {self.value}.\n\n'
|
|
self.entry += f' | Known Synonyms |\n'
|
|
self.entry += f' |---------------------|\n'
|
|
global synonyms_count_dict
|
|
synonyms_count = 0
|
|
for synonym in sorted(self.meta['synonyms']):
|
|
synonyms_count += 1
|
|
self.entry += f' | `{synonym}` |\n'
|
|
synonyms_count_dict[self.value] = synonyms_count
|
|
|
|
def _create_uuid_entry(self):
|
|
if self.uuid:
|
|
self.entry += f'\n'
|
|
self.entry += f'??? tip "Internal MISP references"\n'
|
|
self.entry += f'\n'
|
|
self.entry += f' UUID `{self.uuid}` which can be used as unique global reference for `{self.value}` in MISP communities and other software using the MISP galaxy\n'
|
|
self.entry += f'\n'
|
|
|
|
def _create_refs_entry(self):
|
|
if isinstance(self.meta, dict) and self.meta.get('refs'):
|
|
self.entry += f'\n'
|
|
self.entry += f'??? info "External references"\n'
|
|
self.entry += f'\n'
|
|
|
|
for ref in self.meta['refs']:
|
|
if validators.url(ref):
|
|
self.entry += f' - [{ref}]({ref}) - :material-archive: :material-arrow-right: [webarchive](https://web.archive.org/web/*/{ref})\n'
|
|
else:
|
|
self.entry += f' - {ref}\n'
|
|
|
|
self.entry += f'\n'
|
|
|
|
def _create_associated_metadata_entry(self):
|
|
if isinstance(self.meta, dict):
|
|
excluded_meta = ['synonyms', 'refs']
|
|
self.entry += f'\n'
|
|
self.entry += f'??? info "Associated metadata"\n'
|
|
self.entry += f'\n'
|
|
self.entry += f' |Metadata key |Value|\n'
|
|
self.entry += f' |------------------|-----|\n'
|
|
for meta in sorted(self.meta.keys()):
|
|
if meta not in excluded_meta:
|
|
self.entry += f' | {meta} | {self.meta[meta]} |\n'
|
|
|
|
|
|
def get_related_clusters(self, depth=-1, visited=None):
|
|
global public_relations_count
|
|
global private_relations_count
|
|
global public_clusters
|
|
global private_clusters
|
|
global empty_uuids_dict
|
|
empty_uuids = 0
|
|
|
|
if visited is None:
|
|
visited = set()
|
|
|
|
related_clusters = []
|
|
if depth == 0 or not self.related_list:
|
|
return related_clusters
|
|
|
|
for cluster in self.related_list:
|
|
dest_uuid = cluster["dest-uuid"]
|
|
if dest_uuid not in cluster_dict:
|
|
# Check if UUID is empty
|
|
if not dest_uuid:
|
|
empty_uuids += 1
|
|
continue
|
|
private_relations_count += 1
|
|
if dest_uuid not in private_clusters:
|
|
private_clusters.append(dest_uuid)
|
|
related_clusters.append((self, Cluster(value="Private Cluster", uuid=dest_uuid, date=None, description=None, related_list=None, meta=None)))
|
|
continue
|
|
if dest_uuid in visited:
|
|
continue
|
|
visited.add(dest_uuid)
|
|
related_cluster = cluster_dict[dest_uuid]
|
|
|
|
public_relations_count += 1
|
|
if dest_uuid not in public_clusters:
|
|
public_clusters.append(dest_uuid)
|
|
related_clusters.append((self, related_cluster))
|
|
|
|
if depth > 1 or depth == -1:
|
|
new_depth = depth - 1 if depth > 1 else -1
|
|
related_clusters += related_cluster.get_related_clusters(depth=new_depth, visited=visited)
|
|
|
|
if empty_uuids > 0:
|
|
empty_uuids_dict[self.value] = empty_uuids
|
|
for cluster in related_clusters:
|
|
if (cluster[1], cluster[0]) in related_clusters:
|
|
related_clusters.remove(cluster)
|
|
return related_clusters
|
|
|
|
def _create_related_entry(self):
|
|
if self.related_list and cluster_dict:
|
|
related_clusters = self.get_related_clusters()
|
|
self.entry += f'\n'
|
|
self.entry += f'??? info "Related clusters"\n'
|
|
self.entry += f'\n'
|
|
self.entry += f' ```mermaid\n'
|
|
self.entry += f' graph TD\n'
|
|
|
|
global relation_count_dict
|
|
relation_count = 0
|
|
|
|
for relation in related_clusters:
|
|
relation_count += 1
|
|
# print(self.value)
|
|
# print(relation)
|
|
# print(relation[0].value)
|
|
# print(relation[1].value)
|
|
self.entry += f' {relation[0].uuid}[{relation[0].value}] --- {relation[1].uuid}[{relation[1].value}]\n'
|
|
self.entry += f' ```\n'
|
|
relation_count_dict[self.value] = relation_count
|
|
|
|
def create_entry(self):
|
|
self._create_title_entry()
|
|
self._create_description_entry()
|
|
self._create_synonyms_entry()
|
|
self._create_uuid_entry()
|
|
self._create_refs_entry()
|
|
self._create_associated_metadata_entry()
|
|
self._create_related_entry()
|
|
return self.entry
|
|
|
|
galaxies = []
|
|
for galaxy in galaxies_fnames:
|
|
with open(os.path.join(pathClusters, galaxy)) as fr:
|
|
galaxie_json = json.load(fr)
|
|
galaxies.append(Galaxy(galaxie_json['values'], galaxie_json['authors'], galaxie_json['description'], galaxie_json['name'], galaxy.split('.')[0]))
|
|
|
|
cluster_dict = {}
|
|
for galaxy in galaxies:
|
|
for cluster in galaxy.clusters:
|
|
cluster_dict[cluster.uuid] = cluster
|
|
|
|
# test = cluster_dict['f0ec2df5-2e38-4df3-970d-525352006f2e']
|
|
# print(test.get_related_clusters())
|
|
|
|
def create_index(intro, contributing, galaxies):
|
|
index_output = intro
|
|
for galaxie in galaxies:
|
|
index_output += f'- [{galaxie.name}](./{galaxie.json_file_name}/index.md)\n'
|
|
index_output += contributing
|
|
return index_output
|
|
|
|
def create_galaxies(galaxies):
|
|
galaxy_output = {}
|
|
for galaxie in galaxies:
|
|
galaxy_output[galaxie.json_file_name] = galaxie.create_entry()
|
|
return galaxy_output
|
|
|
|
if __name__ == "__main__":
|
|
index_output = create_index(intro, contributing, galaxies)
|
|
galaxy_output = create_galaxies(galaxies)
|
|
|
|
if not os.path.exists(pathSite):
|
|
os.mkdir(pathSite)
|
|
with open(os.path.join(pathSite, 'index.md'), "w") as index:
|
|
index.write(index_output)
|
|
|
|
for f in galaxies_fnames:
|
|
cluster_filename = f.split('.')[0]
|
|
pathSiteCluster = os.path.join(pathSite, cluster_filename)
|
|
if not os.path.exists(pathSiteCluster):
|
|
os.mkdir(pathSiteCluster)
|
|
with open(os.path.join(pathSiteCluster, 'index.md'), "w") as index:
|
|
index.write(galaxy_output[cluster_filename])
|
|
|
|
print(f"Public relations: {public_relations_count}")
|
|
print(f"Private relations: {private_relations_count}")
|
|
print(f"Total relations: {public_relations_count + private_relations_count}")
|
|
print(f"Percetage of private relations: {private_relations_count / (public_relations_count + private_relations_count) * 100}%")
|
|
print(f"Private clusters: {len(private_clusters)}")
|
|
print(f"Public clusters: {len(public_clusters)}")
|
|
print(f"Total clusters: {len(private_clusters) + len(public_clusters)}")
|
|
print(f"Percentage of private clusters: {len(private_clusters) / (len(private_clusters) + len(public_clusters)) * 100}%")
|
|
print(f"Average number of relations per cluster: {sum(relation_count_dict.values()) / len(relation_count_dict)}")
|
|
print(f"Max number of relations per cluster: {max(relation_count_dict.values())} from {max(relation_count_dict, key=relation_count_dict.get)}")
|
|
print(f"Min number of relations per cluster: {min(relation_count_dict.values())} from {min(relation_count_dict, key=relation_count_dict.get)}")
|
|
print(f"Average number of synonyms per cluster: {sum(synonyms_count_dict.values()) / len(synonyms_count_dict)}")
|
|
print(f"Max number of synonyms per cluster: {max(synonyms_count_dict.values())} from {max(synonyms_count_dict, key=synonyms_count_dict.get)}")
|
|
print(f"Min number of synonyms per cluster: {min(synonyms_count_dict.values())} from {min(synonyms_count_dict, key=synonyms_count_dict.get)}")
|
|
print(f"Number of empty UUIDs: {sum(empty_uuids_dict.values())}")
|
|
print(f"Empty UUIDs per cluster: {empty_uuids_dict}")
|
|
|