ail-framework/bin/SentimentAnalysis.py
Alexandre Dulaunoy cf903cc212 (partially fix #90 too) using a simple Alarm (SIGNAL) when exec-timeout
Introducing a timer (in this case 60 seconds) to ensure that the
execution time of the analysis takes less than 60 seconds. This
is a simple and standard POSIX signal handler. If the timeout
is reached, the module will process the next one.

This approach fixes the specific issues we have currently
with some inputs where the sentiment analysis takes too much time. This
fix should be improved and be more generic:

 - Introducing statistics of content which timeouts.
 - Keeping a list/queue to further process those files using a different
   analysis approach. Maybe a set of "dirty" processes to handle the edge cases
   and to not impact the overall processing and analysis.
 - Make the timer configurable per module (at least for this one).
2017-01-26 07:11:18 +00:00

159 lines
5.2 KiB
Python
Executable file

#!/usr/bin/env python2
# -*-coding:UTF-8 -*
"""
Sentiment analyser module.
It takes its inputs from 'global'.
The content analysed comes from the pastes with length of the line
above a defined threshold removed (get_p_content_with_removed_lines).
This is done because NLTK sentences tokemnizer (sent_tokenize) seems to crash
for long lines (function _slices_from_text line#1276).
nltk.sentiment.vader module credit:
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
"""
import time
import datetime
import calendar
import redis
import json
from pubsublogger import publisher
from Helper import Process
from packages import Paste
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk import tokenize
# Config Variables
accepted_Mime_type = ['text/plain']
size_threshold = 250
line_max_length_threshold = 1000
def Analyse(message, server):
path = message
paste = Paste.Paste(path)
# get content with removed line + number of them
num_line_removed, p_content = paste.get_p_content_with_removed_lines(line_max_length_threshold)
provider = paste.p_source
p_date = str(paste._get_p_date())
p_MimeType = paste._get_p_encoding()
# Perform further analysis
if p_MimeType == "text/plain":
if isJSON(p_content):
p_MimeType = "JSON"
if p_MimeType in accepted_Mime_type:
the_date = datetime.date(int(p_date[0:4]), int(p_date[4:6]), int(p_date[6:8]))
the_time = datetime.datetime.now()
the_time = datetime.time(getattr(the_time, 'hour'), 0, 0)
combined_datetime = datetime.datetime.combine(the_date, the_time)
timestamp = calendar.timegm(combined_datetime.timetuple())
sentences = tokenize.sent_tokenize(p_content.decode('utf-8', 'ignore'))
if len(sentences) > 0:
avg_score = {'neg': 0.0, 'neu': 0.0, 'pos': 0.0, 'compoundPos': 0.0, 'compoundNeg': 0.0}
neg_line = 0
pos_line = 0
sid = SentimentIntensityAnalyzer()
for sentence in sentences:
ss = sid.polarity_scores(sentence)
for k in sorted(ss):
if k == 'compound':
if ss['neg'] > ss['pos']:
avg_score['compoundNeg'] += ss[k]
neg_line += 1
else:
avg_score['compoundPos'] += ss[k]
pos_line += 1
else:
avg_score[k] += ss[k]
for k in avg_score:
if k == 'compoundPos':
avg_score[k] = avg_score[k] / (pos_line if pos_line > 0 else 1)
elif k == 'compoundNeg':
avg_score[k] = avg_score[k] / (neg_line if neg_line > 0 else 1)
else:
avg_score[k] = avg_score[k] / len(sentences)
# In redis-levelDB: {} = set, () = K-V
# {Provider_set -> provider_i}
# {Provider_TimestampInHour_i -> UniqID_i}_j
# (UniqID_i -> PasteValue_i)
server.sadd('Provider_set', provider)
provider_timestamp = provider + '_' + str(timestamp)
server.incr('UniqID')
UniqID = server.get('UniqID')
print provider_timestamp, '->', UniqID, 'dropped', num_line_removed, 'lines'
server.sadd(provider_timestamp, UniqID)
server.set(UniqID, avg_score)
else:
print 'Dropped:', p_MimeType
def isJSON(content):
try:
json.loads(content)
return True
except Exception,e:
return False
import signal
class TimeoutException(Exception):
pass
def timeout_handler(signum, frame):
raise TimeoutException
signal.signal(signal.SIGALRM, timeout_handler)
if __name__ == '__main__':
# If you wish to use an other port of channel, do not forget to run a subscriber accordingly (see launch_logs.sh)
# Port of the redis instance used by pubsublogger
publisher.port = 6380
# Script is the default channel used for the modules.
publisher.channel = 'Script'
# Section name in bin/packages/modules.cfg
config_section = 'SentimentAnalysis'
# Setup the I/O queues
p = Process(config_section)
# Sent to the logging a description of the module
publisher.info("<description of the module>")
# REDIS_LEVEL_DB #
server = redis.StrictRedis(
host=p.config.get("Redis_Level_DB_Sentiment", "host"),
port=p.config.get("Redis_Level_DB_Sentiment", "port"),
db=p.config.get("Redis_Level_DB_Sentiment", "db"))
while True:
message = p.get_from_set()
if message is None:
publisher.debug("{} queue is empty, waiting".format(config_section))
time.sleep(1)
continue
signal.alarm(60)
try:
Analyse(message, server)
except TimeoutException:
print ("{0} processing timeout".format(message))
continue
else:
signal.alarm(0)