ail-framework/bin/SentimentAnalysis.py
2018-05-04 13:53:29 +02:00

173 lines
5.6 KiB
Python
Executable file

#!/usr/bin/env python3
# -*-coding:UTF-8 -*
"""
Sentiment analyser module.
It takes its inputs from 'global'.
The content is analysed if the length of the line is
above a defined threshold (get_p_content_with_removed_lines).
This is done because NLTK sentences tokemnizer (sent_tokenize) seems to crash
for long lines (function _slices_from_text line#1276).
nltk.sentiment.vader module credit:
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
"""
import time
import datetime
import calendar
import redis
import json
from pubsublogger import publisher
from Helper import Process
from packages import Paste
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk import tokenize
# Config Variables
accepted_Mime_type = ['text/plain']
size_threshold = 250
line_max_length_threshold = 1000
import os
import configparser
configfile = os.path.join(os.environ['AIL_BIN'], 'packages/config.cfg')
if not os.path.exists(configfile):
raise Exception('Unable to find the configuration file. \
Did you set environment variables? \
Or activate the virtualenv.')
cfg = configparser.ConfigParser()
cfg.read(configfile)
sentiment_lexicon_file = cfg.get("Directories", "sentiment_lexicon_file")
def Analyse(message, server):
path = message
paste = Paste.Paste(path)
# get content with removed line + number of them
num_line_removed, p_content = paste.get_p_content_with_removed_lines(line_max_length_threshold)
provider = paste.p_source
p_date = str(paste._get_p_date())
p_MimeType = paste._get_p_encoding()
# Perform further analysis
if p_MimeType == "text/plain":
if isJSON(p_content):
p_MimeType = "JSON"
if p_MimeType in accepted_Mime_type:
the_date = datetime.date(int(p_date[0:4]), int(p_date[4:6]), int(p_date[6:8]))
the_time = datetime.datetime.now()
the_time = datetime.time(getattr(the_time, 'hour'), 0, 0)
combined_datetime = datetime.datetime.combine(the_date, the_time)
timestamp = calendar.timegm(combined_datetime.timetuple())
sentences = tokenize.sent_tokenize(p_content)
if len(sentences) > 0:
avg_score = {'neg': 0.0, 'neu': 0.0, 'pos': 0.0, 'compoundPos': 0.0, 'compoundNeg': 0.0}
neg_line = 0
pos_line = 0
sid = SentimentIntensityAnalyzer(sentiment_lexicon_file)
for sentence in sentences:
ss = sid.polarity_scores(sentence)
for k in sorted(ss):
if k == 'compound':
if ss['neg'] > ss['pos']:
avg_score['compoundNeg'] += ss[k]
neg_line += 1
else:
avg_score['compoundPos'] += ss[k]
pos_line += 1
else:
avg_score[k] += ss[k]
for k in avg_score:
if k == 'compoundPos':
avg_score[k] = avg_score[k] / (pos_line if pos_line > 0 else 1)
elif k == 'compoundNeg':
avg_score[k] = avg_score[k] / (neg_line if neg_line > 0 else 1)
else:
avg_score[k] = avg_score[k] / len(sentences)
# In redis-levelDB: {} = set, () = K-V
# {Provider_set -> provider_i}
# {Provider_TimestampInHour_i -> UniqID_i}_j
# (UniqID_i -> PasteValue_i)
server.sadd('Provider_set', provider)
provider_timestamp = provider + '_' + str(timestamp)
server.incr('UniqID')
UniqID = server.get('UniqID')
print(provider_timestamp, '->', UniqID, 'dropped', num_line_removed, 'lines')
server.sadd(provider_timestamp, UniqID)
server.set(UniqID, avg_score)
else:
print('Dropped:', p_MimeType)
def isJSON(content):
try:
json.loads(content)
return True
except Exception:
return False
import signal
class TimeoutException(Exception):
pass
def timeout_handler(signum, frame):
raise TimeoutException
signal.signal(signal.SIGALRM, timeout_handler)
if __name__ == '__main__':
# If you wish to use an other port of channel, do not forget to run a subscriber accordingly (see launch_logs.sh)
# Port of the redis instance used by pubsublogger
publisher.port = 6380
# Script is the default channel used for the modules.
publisher.channel = 'Script'
# Section name in bin/packages/modules.cfg
config_section = 'SentimentAnalysis'
# Setup the I/O queues
p = Process(config_section)
# Sent to the logging a description of the module
publisher.info("<description of the module>")
# REDIS_LEVEL_DB #
server = redis.StrictRedis(
host=p.config.get("Redis_Level_DB_Sentiment", "host"),
port=p.config.get("Redis_Level_DB_Sentiment", "port"),
db=p.config.get("Redis_Level_DB_Sentiment", "db"),
decode_responses=True)
while True:
message = p.get_from_set()
if message is None:
publisher.debug("{} queue is empty, waiting".format(config_section))
time.sleep(1)
continue
signal.alarm(60)
try:
Analyse(message, server)
except TimeoutException:
print ("{0} processing timeout".format(message))
continue
else:
signal.alarm(0)