ail-framework/bin/tests/indexer_lookup.py
Alexandre Dulaunoy 0b4a80b7ea -s option added to find similar documents
By default, the index is not storing the vector of the document (Whoosh
document schema). It won't work if you don't change the schema of the
index for the content. It depends of your storage strategy.
2014-08-12 13:42:26 +02:00

89 lines
2.8 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# This file is part of AIL framework - Analysis Information Leak framework
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Copyright (c) 2014 Alexandre Dulaunoy - a@foo.be
import ConfigParser
import argparse
import sys
import gzip
def readdoc(path=None):
if path is None:
return False
f = gzip.open (path, 'r')
return f.read()
configfile = '../packages/config.cfg'
cfg = ConfigParser.ConfigParser()
cfg.read(configfile)
# Indexer configuration - index dir and schema setup
indexpath = cfg.get("Indexer", "path")
indexertype = cfg.get("Indexer", "type")
argParser = argparse.ArgumentParser(description='Fulltext search for AIL')
argParser.add_argument('-q', action='append', help='query to lookup (one or more)')
argParser.add_argument('-n', action='store_true', default=False, help='return numbers of indexed documents')
argParser.add_argument('-t', action='store_true', default=False, help='dump top 500 terms')
argParser.add_argument('-l', action='store_true', default=False, help='dump all terms encountered in indexed documents')
argParser.add_argument('-f', action='store_true', default=False, help='dump each matching document')
argParser.add_argument('-s', action='append', help='search similar documents')
args = argParser.parse_args()
from whoosh import index
from whoosh.fields import *
import whoosh
schema = Schema(title=TEXT(stored=True), path=ID(stored=True), content=TEXT)
ix = index.open_dir(indexpath)
from whoosh.qparser import QueryParser
if args.n:
print ix.doc_count_all()
exit(0)
if args.l:
xr = ix.searcher().reader()
for x in xr.lexicon("content"):
print (x)
exit(0)
if args.t:
xr = ix.searcher().reader()
for x in xr.most_frequent_terms("content", number=500, prefix=''):
print (x)
exit(0)
if args.s:
# By default, the index is not storing the vector of the document (Whoosh
# document schema). It won't work if you don't change the schema of the
# index for the content. It depends of your storage strategy.
docnum = ix.searcher().document_number(path=args.s)
r = ix.searcher().more_like(docnum, "content")
for hit in r:
print(hit["path"])
exit(0)
if args.q is None:
argParser.print_help()
exit(1)
with ix.searcher() as searcher:
query = QueryParser("content", ix.schema).parse(" ".join(args.q))
results = searcher.search(query, limit=None)
for x in results:
if args.f:
print (readdoc(path=x.items()[0][1]))
else:
print (x.items()[0][1])
print