#!/usr/bin/env python3 # -*-coding:UTF-8 -* """ This module is consuming the Redis-list created by the ZMQ_Sub_Curve_Q Module. This modules update a .csv file used to draw curves representing selected words and their occurency per day. ..note:: The channel will have the name of the file created. ..note:: Module ZMQ_Something_Q and ZMQ_Something are closely bound, always put the same Subscriber name in both of them. This Module is also used for term frequency. /!\ Top set management is done in the module Curve_manage_top_set Requirements ------------ *Need running Redis instances. (Redis) *Categories files of words in /files/ need to be created *Need the ZMQ_PubSub_Tokenize_Q Module running to be able to work properly. """ import redis import time from pubsublogger import publisher from packages import lib_words import os import datetime import calendar from Helper import Process # Email notifications from NotificationHelper import * # Config Variables BlackListTermsSet_Name = "BlackListSetTermSet" TrackedTermsSet_Name = "TrackedSetTermSet" top_term_freq_max_set_cardinality = 20 # Max cardinality of the terms frequences set oneDay = 60*60*24 top_termFreq_setName_day = ["TopTermFreq_set_day_", 1] top_termFreq_setName_week = ["TopTermFreq_set_week", 7] top_termFreq_setName_month = ["TopTermFreq_set_month", 31] top_termFreq_set_array = [top_termFreq_setName_day,top_termFreq_setName_week, top_termFreq_setName_month] def check_if_tracked_term(term, path): if term in server_term.smembers(TrackedTermsSet_Name): #add_paste to tracked_word_set set_name = "tracked_" + term server_term.sadd(set_name, path) print(term, 'addded', set_name, '->', path) p.populate_set_out("New Term added", 'CurveManageTopSets') # Send a notification only when the member is in the set if term in server_term.smembers(TrackedTermsNotificationEnabled_Name): # Send to every associated email adress for email in server_term.smembers(TrackedTermsNotificationEmailsPrefix_Name + term): sendEmailNotification(email, term) def getValueOverRange(word, startDate, num_day): to_return = 0 for timestamp in range(startDate, startDate - num_day*oneDay, -oneDay): value = server_term.hget(timestamp, word) to_return += int(value) if value is not None else 0 return to_return if __name__ == "__main__": publisher.port = 6380 publisher.channel = "Script" config_section = 'Curve' p = Process(config_section) # REDIS # r_serv1 = redis.StrictRedis( host=p.config.get("Redis_Level_DB_Curve", "host"), port=p.config.get("Redis_Level_DB_Curve", "port"), db=p.config.get("Redis_Level_DB_Curve", "db"), decode_responses=True) server_term = redis.StrictRedis( host=p.config.get("Redis_Level_DB_TermFreq", "host"), port=p.config.get("Redis_Level_DB_TermFreq", "port"), db=p.config.get("Redis_Level_DB_TermFreq", "db"), decode_responses=True) # FUNCTIONS # publisher.info("Script Curve started") # FILE CURVE SECTION # csv_path = os.path.join(os.environ['AIL_HOME'], p.config.get("Directories", "wordtrending_csv")) wordfile_path = os.path.join(os.environ['AIL_HOME'], p.config.get("Directories", "wordsfile")) message = p.get_from_set() prec_filename = None generate_new_graph = False # Term Frequency top_termFreq_setName_day = ["TopTermFreq_set_day_", 1] top_termFreq_setName_week = ["TopTermFreq_set_week", 7] top_termFreq_setName_month = ["TopTermFreq_set_month", 31] while True: if message is not None: generate_new_graph = True filename, word, score = message.split() temp = filename.split('/') date = temp[-4] + temp[-3] + temp[-2] timestamp = calendar.timegm((int(temp[-4]), int(temp[-3]), int(temp[-2]), 0, 0, 0)) curr_set = top_termFreq_setName_day[0] + str(timestamp) low_word = word.lower() #Old curve with words in file r_serv1.hincrby(low_word, date, int(score)) # Update redis #consider the num of occurence of this term curr_word_value = int(server_term.hincrby(timestamp, low_word, int(score))) #1 term per paste curr_word_value_perPaste = int(server_term.hincrby("per_paste_" + str(timestamp), low_word, int(1))) # Add in set only if term is not in the blacklist if low_word not in server_term.smembers(BlackListTermsSet_Name): #consider the num of occurence of this term server_term.zincrby(curr_set, low_word, float(score)) #1 term per paste server_term.zincrby("per_paste_" + curr_set, low_word, float(1)) #Add more info for tracked terms check_if_tracked_term(low_word, filename) #send to RegexForTermsFrequency to_send = "{} {} {}".format(filename, timestamp, word) p.populate_set_out(to_send, 'RegexForTermsFrequency') else: if generate_new_graph: generate_new_graph = False print('Building graph') today = datetime.date.today() year = today.year month = today.month lib_words.create_curve_with_word_file(r_serv1, csv_path, wordfile_path, year, month) publisher.debug("Script Curve is Idling") print("sleeping") time.sleep(10) message = p.get_from_set()