#!/usr/bin/env python2 # -*-coding:UTF-8 -* """ Sentiment analyser module. It takes its inputs from 'global'. The content analysed comes from the pastes with length of the line above a defined threshold removed (get_p_content_with_removed_lines). This is done because NLTK sentences tokemnizer (sent_tokenize) seems to crash for long lines (function _slices_from_text line#1276). nltk.sentiment.vader module credit: Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. """ import time import datetime import calendar import redis import json from pubsublogger import publisher from Helper import Process from packages import Paste from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk import tokenize # Config Variables accepted_Mime_type = ['text/plain'] size_threshold = 250 line_max_length_threshold = 1000 import os import ConfigParser configfile = os.path.join(os.environ['AIL_BIN'], 'packages/config.cfg') if not os.path.exists(configfile): raise Exception('Unable to find the configuration file. \ Did you set environment variables? \ Or activate the virtualenv.') cfg = ConfigParser.ConfigParser() cfg.read(configfile) sentiment_lexicon_file = cfg.get("Directories", "sentiment_lexicon_file") def Analyse(message, server): path = message paste = Paste.Paste(path) # get content with removed line + number of them num_line_removed, p_content = paste.get_p_content_with_removed_lines(line_max_length_threshold) provider = paste.p_source p_date = str(paste._get_p_date()) p_MimeType = paste._get_p_encoding() # Perform further analysis if p_MimeType == "text/plain": if isJSON(p_content): p_MimeType = "JSON" if p_MimeType in accepted_Mime_type: the_date = datetime.date(int(p_date[0:4]), int(p_date[4:6]), int(p_date[6:8])) the_time = datetime.datetime.now() the_time = datetime.time(getattr(the_time, 'hour'), 0, 0) combined_datetime = datetime.datetime.combine(the_date, the_time) timestamp = calendar.timegm(combined_datetime.timetuple()) sentences = tokenize.sent_tokenize(p_content.decode('utf-8', 'ignore')) if len(sentences) > 0: avg_score = {'neg': 0.0, 'neu': 0.0, 'pos': 0.0, 'compoundPos': 0.0, 'compoundNeg': 0.0} neg_line = 0 pos_line = 0 sid = SentimentIntensityAnalyzer(sentiment_lexicon_file) for sentence in sentences: ss = sid.polarity_scores(sentence) for k in sorted(ss): if k == 'compound': if ss['neg'] > ss['pos']: avg_score['compoundNeg'] += ss[k] neg_line += 1 else: avg_score['compoundPos'] += ss[k] pos_line += 1 else: avg_score[k] += ss[k] for k in avg_score: if k == 'compoundPos': avg_score[k] = avg_score[k] / (pos_line if pos_line > 0 else 1) elif k == 'compoundNeg': avg_score[k] = avg_score[k] / (neg_line if neg_line > 0 else 1) else: avg_score[k] = avg_score[k] / len(sentences) # In redis-levelDB: {} = set, () = K-V # {Provider_set -> provider_i} # {Provider_TimestampInHour_i -> UniqID_i}_j # (UniqID_i -> PasteValue_i) server.sadd('Provider_set', provider) provider_timestamp = provider + '_' + str(timestamp) server.incr('UniqID') UniqID = server.get('UniqID') print provider_timestamp, '->', UniqID, 'dropped', num_line_removed, 'lines' server.sadd(provider_timestamp, UniqID) server.set(UniqID, avg_score) else: print 'Dropped:', p_MimeType def isJSON(content): try: json.loads(content) return True except Exception,e: return False if __name__ == '__main__': # If you wish to use an other port of channel, do not forget to run a subscriber accordingly (see launch_logs.sh) # Port of the redis instance used by pubsublogger publisher.port = 6380 # Script is the default channel used for the modules. publisher.channel = 'Script' # Section name in bin/packages/modules.cfg config_section = 'SentimentAnalysis' # Setup the I/O queues p = Process(config_section) # Sent to the logging a description of the module publisher.info("") # REDIS_LEVEL_DB # server = redis.StrictRedis( host=p.config.get("Redis_Level_DB_Sentiment", "host"), port=p.config.get("Redis_Level_DB_Sentiment", "port"), db=p.config.get("Redis_Level_DB_Sentiment", "db")) while True: message = p.get_from_set() if message is None: publisher.debug("{} queue is empty, waiting".format(config_section)) time.sleep(1) continue Analyse(message, server)